
Counterfactually Reasoning About Security

Manuel Peralta
Louisiana State University,
Baton Rouge, LA 70803,

U.S.A.
mperal4@lsu.edu

Supratik Mukhopadhyay
Louisiana State University,
Baton Rouge, LA 70803,

U.S.A.
supratik@csc.lsu.edu

Ramesh Bharadwaj
Naval Research Laboratory,

Washington, DC
ramesh@itd.nrl.navy.mil

ABSTRACT
In this paper, we provide the background to counterfactual
logic and give very general suggestions on how we could
employ this logic to help us reason about security policies. It
seems very appropriate to use this kind of logic to anticipate
a change that will compromise the security concerns of a
given system before actually applying the changes.

Categories and Subject Descriptors
F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs—logic of pro-
grams; D.4.6 [Operating Systems]: Security and Protec-
tion—access controls

General Terms
Formal Verification, Security

Keywords
formal verification; proof theory; security models; software
engineering

1. INTRODUCTION
In the realm of software security, changes regarding secu-

rity policies are pervasive. It is in this constant changing en-
vironment where a system’s security becomes compromised.
In practice, security policies are changed and, in the worst
case, any defect or undesired effect is usually found after the
fact and often too late. Requiring that the security policies
remain unchanged is out of the question and blatantly unre-
alistic. Therefore, we are in need of mechanisms that enable
us to formalize the security policies, the changes regarding
security policies and the future effect of said changes.

In this paper we present a framework for what-if analysis
of security policies based on Lewis’ theory of counterfactuals
[7]. The framework can be used to statically perform change-
impact analysis for access control matrices. It enables us to
verify assertions about a changed version of an access con-
trol matrix without actually incorporating the changes. We

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
SIN’11, November 14–19, 2011, Sydney, Australia.
Copyright 2011 ACM 978-1-4503-1020-8/11/11 ...$10.00.

present a logical calculus that precisely characterizes poten-
tial structural modifications to source code and their impact
on the program’s behavior.

2. RELATED WORK
The theory of counterfactuals allows us to reason about

hypothetical situations. It has been used in Philosophy and
Political Science [9] for decision making in a hypothetical en-
vironment. In Physics, it has been used for reasoning about
measurements in quantum mechanics [12], [8]. The main
idea exposed by Fisler et al. in [2] is to gain knowledge re-
garding the effects of changing access control policies before
actually making such changes. The work of Fisler et al. is
similar to the one presented in this paper as it tries to find
the effects of a change a priori. The work of Chockler et al.
in [1] employs counterfactual reasoning also in the context
of model checking. In this instance, the authors emphasize
their work in coverage issues. They use counterfactual rea-
soning to enhance the coverage information. This work dif-
fers from ours since they use counterfactual logic to explore
alternative scenarios whereas we explore a single alternative
version given an initial version.

Also, in [4], Groce et al. use counterfactual theory to de-
tect failures, isolate errors and aid in repairing modifications
of program code in the context of model checking. They con-
struct a model of program executions and establish a metric
among them. This metric lets them analyze faulty execu-
tions by examining those which lie at some distance from a
given faulty execution. The work of [4] relates to ours in the
sense that the authors define a notion of distance among pos-
sible execution traces in the same sense we implicitly define
the number of transformation steps between program ver-
sions. In [4], however, the authors go beyond just defining a
notion of proximity and actually define, given a system exe-
cution trace, the set of neighboring traces whereas our work
only characterizes a single future version. The work of Ren
et al. in [11] exposes a tool (i.e. Chianti) that analyzes two
different versions of a given program and a set of test cases
for such program and determines which tests are affected
due to the changes that lead from one version to another.
Furthermore, for each affected test, the tool determines a
set of method-level changes that most probably affected the
test. Our work differs from the work in [11] in the sense
that we do not require a second version and a set of test
cases. Our approach just needs the changes to be expressed
in our logical calculus. The approach given by Guo et al.
in [5] exhibits a method by which change impact analysis is
modeled and verified in a distributed setting. Their model is

223



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 2011 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Counterfactually Reasoning About Security 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Louisiana State University, Baton Rouge, LA 70803, U.S.A. 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADA553912. International Conference on Security of Information and Networks (4th) (SIN 2011)
Held in Sydney, Australia on November 14-19, 2011. Approved for public release; U.S. Government or
Federal Purpose Rights License. 

14. ABSTRACT 
In this paper, we provide the background to counterfactual logic and give very general suggestions on how
we could employ this logic to help us reason about security policies. It seems very appropriate to use this
kind of logic to anticipate a change that will compromise the security concerns of a given system before
actually applying the changes. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

4 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



in essence a network of state machines that communicate ei-
ther via shared variables or queues. Changes are modeled as
adding and/or deleting transitions from the composite state
machine that represents the distributed system. The work
in [5] is similar to ours in the context of two aspects: 1) the
authors are formally representing change in a system, how-
ever, their approach targets distributed computations and is
based on model checking whereas our approach targets se-
quential computation and it is based on theorem proving; 2)
this approach prunes the global state space by using partial
order reduction in order to infer the valid transitions when a
change occurs; our approach deals with change at the source
code level and the validity of the change is inferred by our
logical calculus.

In [13], Subramaniam et al. enhance the approach shown
in [5]. The changes are still represented by adding and/or
deleting transitions of a composite state machine. However,
this work addresses the issue of test suite coverage when
changes occur. This approach detects the affected tests
based on whether or not these include the affected tran-
sitions. Using formal verification techniques similar to the
ones presented in [5], the authors are able to reduce the total
regression test suite by identifying which tests are relevant
after a given change. Our approach goes in a different di-
rection by formally characterizing the source code-change
and determining if the changes to the current source code
version are logically consistent with its properties and the
future desired properties.

The work presented in [10] uses symbolic execution to es-
tablish whether or not two source code versions are equiv-
alent. In the negative case the proposed approach gener-
ates the deltas which characterize the input values that in-
duce the behavior difference between the two versions. Our
approach, being based on proof-theoretic methods, relies
mostly on the syntactic nature of change and hence we con-
sider two versions identical as long as they have equivalent
logical characterizations. The latter also means that we are
only interested on cases where our two versions (the actual
and the potential version) are logically different.

3. COUNTERFACTUAL THEORY
The logic of counterfactuals helps us reason about asser-

tions that are not a matter of fact. In [7] Lewis provided a
sound and complete proof system and proved its decidabil-
ity. Based on the logic of counterfactuals we derive a logical
calculus that allows us to assert properties that would hold
for a future version of a given program and verify that these
would indeed hold if the changes needed to obtain that ver-
sion were actually implemented.

3.1 The Language of Counterfactual Theory
In coherence with [7] we will briefly introduce the language

regarding the logic of counterfactuals below (pi denotes a
propositional variable):

φ ::= pi|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|φ� φ

The counterfactual sentence φ� ψ should be read as: if
it had been the case that φ, it would have been the
case that ψ. Thus, if we had an assertion whose antecedent
ranged over the properties of some given access control ma-
trix and also the changes needed to produce a new version
and whose consequent ranged over the properties that a new

version would have, then we could use counterfactual logic
to code such an assertion.

3.2 Formal Representation of A Security Model
In this section we will define a simple variation of the Ac-

cess Control Matrix (ACM) model. This model was first
introduced in [6] and [3]. We have chosen this model due
to its simplicity and readily intuitive nature and widespread
use as it is stated in [6]. First of all, we will define three
sets: S,O and A which are respectively the set of : sub-
jects, objects and actions. The set of subjects contains the
active entities on the system (i.e. users, computer systems,
etc.); the set of objects denotes the set of entities over which
subject are allowed or denied a certain action. The set of
actions denotes those tasks which a subject can perform on
a given object. Hence:

S = {si}i∈I The set of subjects
O = {oj}j∈J The set of objects
A = {Read,Write} The set of actions

Thus, we can now formally define an access control matrix
as a function M : S × O → 2A which takes an ordered pair
composed of a subject and an object and assigns to them
a subset of the possible set of actions. Moreover, in this
instance we will have to work with M ’s intentional or set
representation and thence:

M � {(si, oj , αk)} where αk ∈ 2A

3.2.1 Encoding Change in the ACM model
Let M = {(si, oj , αk)i,j,k∈N} be the current version of the

access control matrix. We can encode the state of any ACM
by using the following formula:

ΨM �
n∧

i=1

m∧

j=1

p∧

k=1

(si, oj , αk) ∈M

We will simplify the latter expression using the following
notation:

ΨM �
∧

i,j,k

(si, oj , αk)

For the sake of simplicity we will define a change to the
ACM as a change to the members of the action-set of a given
triple. Hence, a change may be represented as:

(si, oj , αk)⇒c (si, oj , α
′
k)

It can be readily inferred that⇒c is a three-place-relation
over S ×O ×A. Furthermore, letM denote the class of all
possible ACM versions. Therefore, ⇒c can be thought of as
a binary relation overM and

M ⇒c M ′ iff M ′ � M [αk/α
′
k]

Moreover we define ⇒c to be the smallest relation such
that the following holds:

(si, oj , αk)⇒c (si, oj , α
′
k) iff:

1. α′
k �= ∅ when αk �= ∅

2. α′
k �= A when αk = A

224



3.2.2 Undesirable Configurations
In any system, there is a set of undesirable states. These

states may be very possibly members of the entire set of pos-
sible states. One of the fundamental purposes of any security
mechanisms is to guarantee that for any possible transition
(that originates in a safe/legal state) the target state will
not be an illegal/undesirable state. In this instance an un-
desired state will be denoted by a given configuration/triple
of subject, object and action. Therefore, let U ⊆ S ×O×A
be the set of illegal configurations and let τu range over this
set.

We want to avoid allowing a configuration change in which
we enable an undesirable triple be part of the new version
of the ACM. Hence, we want to avoid the following:

M ⇒c M ′ where τu ∈M ′

3.2.3 Secure Counterfactual Change
Our objective is to enable counterfactual logic to let us

decide whether or not a change to the current version of the
ACM implies that at least one illegal triple is part of the
future resulting version. Thence our secure counterfactual
implication can be expressed as:

[
∧

i,j,k∈N

(si, oj , αk)] ∧ (s0, o0, α0)[α0/α
′
0]� (τu �∈M ′)

3.3 Kripke Versioning Model
In [7] the author provides the semantics of his counter-

factual propositional logic using a multiple-world interpre-
tation. In that same manner we have chosen to interpret
our access control matrix transformation. In our case, each
ACM version will represent a world. In the following defi-
nition, we take the liberty of writing ti ← tj to denote that
the tuple ti was swapped by tuple tj . Below, we provide a
formal interpretation based on a Kripke model.

Definition 3.1 (Kripke Version Model). A Kripke
Version Model R is a triple 〈M,⇒,M0〉 where:

1. M = {Mk}k∈N is the set of all access control matrix
versions (ACM states).

2. M0 is the initial access control matrix.

3. ⇒⊆ M × M is a binary relation defined the set of
all possible ACM versions. Where ⇒ is the smallest
relation such that the following properties hold:

(a) ti ← ti : tuple si is left unchanged. This stands
for the do nothing transformation.

(b) ti ← tj : tuple tj replaces statement ti, where
tj ∈ Mk. We usually call this primitive transfor-
mation, a swap.

(c) ti ← tj : statement tj replaces statement ti, where
tj �∈Mk. Thus, sk is a new statement.

(d) (∀i)ti ∈Mk can be changed only once.

Furthermore, we assume that the relation ⇒ complies
with the properties of reflexivity, symmetry, and transitivity.
Below, we justify each property based on the latter definition
of ⇒:

1. Reflexivity: For any ACM Mi ∈ M, it is obvious
that the do-nothing transformation will yield that any
ACM can be transformed into itself. Therefore, Mi ⇒
Mi given that for all sj ∈Mi, Mi =Mi[sj/sj ]

2. Symmetry: For any ACMs Mi,Mj ∈ M any of the
above transformations can be reversed and therefore,
Mi ⇒Mj implies Mj ⇒Mi.

3. Transitivity: For any ACMs Mi,Mj ,Mk ∈ M, ap-
plying two or more transformations to a program will
yield intermediate versions; this is equivalent to trans-
forming the initial version by composing the transfor-
mations into one. Thus, Mi ⇒ Mj and Mj ⇒Mk im-
ply that Mi ⇒+ Mk. Where ⇒+ denotes ⇒ ◦ ⇒n−1

and n > 1.

3.4 Interpreting the Counterfactual Implica-
tion

As it was stated earlier, the purpose of our model is to help
interpret assertions in the language of counterfactual logic.
Let M0 denote our given initial ACM version. Also, let us
assume we had a counterfactual assertion, namely φ� ψ
in which:

• φ stands for assertions regarding M0 and some trans-
formation ti ← tj that implies that M1 =M0[ti/tj ]

• ψ stands for assertions regarding M1

Thus, following the model-theoretic interpretation pro-
posed by Lewis in [7], our version of the counterfactual im-
plication is interpreted as:

R |= φ� ψ . (1)

Where R denotes our previously defined Kripke Version-
ing Model. Moreover, letting αi, βi denote propositional
statements about the structure of Mi and Mj respectively,
then, we can state that:

φ � (

n∧

i=1

αi) ∧ (Mi ⇒+ Mj)

ψ �
m∧

j=1

βj

Where ⇒+ denotes the positive/transtive closure for the
relation ⇒. Furthermore, given an initial ACM version,
namely M0, we produce several versions by applying one
or more transformations to it. In the context of a coun-
terfactual assertion, the current version’s structure and the
changes applied to it (in order to produce a new version)
imply properties possessed the new version and hence:

R |= φ� ψ � (∃mink ∈ N)(
∧n

i=1 αi)
∧(M0 ⇒k M ′)→ (

∧m
j=1 βj) .

The latter should be interpreted as there exists a min-
imal number of transformation steps such that given the
properties of our initial ACM M0 (namely,

∧n
i=1 αi) and the

transformation between the two program versions implies
the desired properties of the future ACM version (namely,∧m

j=1 βj).

225



4. APPLICATIONS OF COUNTERFACTUAL
THEORY TO SECURITY

Each change to the access control matrix modifies the
state of the security system. Hence, each change reflects
a change in the set of valid policies. It seems very promising
to use counterfactual logic to 1) encode the changes to the
ACM, 2) express the undesirable state-tuples, and 3) assert
whether or not the changes counterfactually imply the unde-
sirable tuples are part of the future state of the ACM. Given
all the risks involved in changing security policies, it would
be nice to foresee their effect before incorporating them into
production systems.

5. CONCLUSION AND FUTURE WORK
We have introduced a logical calculus based on Lewis’ the-

ory of counterfactuals. Additionally we have shown that if
we know how to unambiguously characterize the transforma-
tion from the initial ACM state to the future desired ACM
state, the conjunction between the structural properties of
the initial ACM version and the predicates that character-
ize the transformation, imply the desired future ACM state’s
properties.

This position paper has presented a powerful and promis-
ing suggestion which consists of jointly using a perhaps mod-
ified version of the ACM model and our counterfactual logi-
cal calculus. The latter mix would enable practitioners ver-
ify a-priory the effects of a change to the ACM without
actually applying the change to production systems. Al-
though it is widely known that the question of whether or
not a given security model enforces a given policy is a non-
decidable problem, we are confident that our simplified ACM
model and our counterfactual logic will be helpful to enough
non-trivial applications.

6. REFERENCES
[1] H. Chockler, J. Y. Halpern, and O. Kupferman. What

causes a system to satisfy a specification? ACM
Trans. Comput. Logic, 9(3):1–26, June 2008.

[2] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 196–205, New York, NY,
USA, 2005. ACM.

[3] G. S. Graham and P. J. Denning. Protection:
principles and practice. In Proceedings of the May
16-18, 1972, spring joint computer conference, AFIPS
’72 (Spring), pages 417–429, New York, NY, USA,
1972. ACM.

[4] A. Groce, S. Chaki, D. Kroening, and O. Strichman.
Error explanation with distance metrics. International
Journal on Software Tools for Technology Transfer
(STTT), 8(3):229–247, June 2006.

[5] B. Guo and M. Subramaniam. Formal change impact
analyses of extended finite state machines using a
theorem prover. Software Engineering and Formal
Methods, International Conference on, pages 335–344,
2008.

[6] B. W. Lampson. Protection. SIGOPS Oper. Syst.
Rev., 8(1):18–24, Jan. 1974.

[7] D. K. Lewis. Counterfactuals, chapter 6, pages 118 –
143. Wiley-Blackwell, 2nd edition, January 2001.

[8] G. Mitchison and R. Jozsa. Counterfactual
computation. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and
Engineering Sciences, 457(2009):1175–1193, May 2001.

[9] J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, March 2000.

[10] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pǎsǎreanu. Differential symbolic execution. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
SIGSOFT ’08/FSE-16, pages 226–237, New York, NY,
USA, 2008. ACM.

[11] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of java
programs. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
volume 39, pages 432–448, New York, NY, USA,
October 2004. ACM.

[12] B. Skyrms. Counterfactual definiteness and local
causation. Philosophy of Science, 49(1):43–50, 1982.

[13] M. Subramaniam, B. Guo, and Z. Pap. Using change
impact analysis to select tests for extended finite state
machines. Software Engineering and Formal Methods,
International Conference on, pages 93–102, 2009.

226


